Log-Determinant Divergences Revisited: Alpha-Beta and Gamma Log-Det Divergences
نویسندگان
چکیده
In this paper, we review and extend a family of log-det divergences for symmetric positive definite (SPD) matrices and discuss their fundamental properties. We show how to generate from parameterized Alpha-Beta (AB) and Gamma log-det divergences many well known divergences, for example, the Stein’s loss, S-divergence, called also Jensen-Bregman LogDet (JBLD) divergence, the Logdet Zero (Bhattacharryya) divergence, Affine Invariant Riemannian Metric (AIRM) as well as some new divergences. Moreover, we establish links and correspondences among many log-det divergences and display them on alpha-beta plain for various set of parameters. Furthermore, this paper bridges these divergences and shows also their links to divergences of multivariate and multilinear normal distributions. Closed form formulas are derived for gamma divergences of two multivariate Gaussian densities including as special cases the Kullback-Leibler, Bhattacharryya, Rényi and Cauchy-Schwartz divergences. Symmetrized versions of the log-det divergences are also discussed and reviewed. A class of divergences is extended to multiway divergences for separable covariance (or precision) matrices.
منابع مشابه
Infinite-dimensional Log-Determinant divergences II: Alpha-Beta divergences
This work presents a parametrized family of divergences, namely Alpha-Beta LogDeterminant (Log-Det) divergences, between positive definite unitized trace class operators on a Hilbert space. This is a generalization of the Alpha-Beta Log-Determinant divergences between symmetric, positive definite matrices to the infinite-dimensional setting. The family of Alpha-Beta Log-Det divergences is highl...
متن کاملOptimization of Alpha-Beta Log-Det Divergences and their Application in the Spatial Filtering of Two Class Motor Imagery Movements
The Alpha-Beta Log-Det divergences for positive definite matrices are flexible divergences that are parameterized by two real constants and are able to specialize several relevant classical cases like the squared Riemannian metric, the Steins loss, the S-divergence, etc. A novel classification criterion based on these divergences is optimized to address the problem of classification of the moto...
متن کاملFamilies of Alpha- Beta- and Gamma- Divergences: Flexible and Robust Measures of Similarities
In this paper, we extend and overview wide families of Alpha-, Betaand Gammadivergences and discuss their fundamental properties. In literature usually only one single asymmetric (Alpha, Beta or Gamma) -divergence is considered. We show in this paper that there exist families of such divergences with the same consistent properties. Moreover, we establish links and correspondences among these di...
متن کاملGeneralized Alpha-Beta Divergences and Their Application to Robust Nonnegative Matrix Factorization
We propose a class of multiplicative algorithms for Nonnegative Matrix Factorization (NMF) which are robust with respect to noise and outliers. To achieve this, we formulate a new family generalized divergences referred to as the Alpha-Beta-divergences (AB-divergences), which are parameterized by the two tuning parameters, alpha and beta, and smoothly connect the fundamental Alpha-, Betaand Gam...
متن کاملAlpha/Beta Divergences and Tweedie Models
We describe the underlying probabilistic interpretation of alpha and beta divergences. We first show that beta divergences are inherently tied to Tweedie distributions, a particular type of exponential family, known as exponential dispersion models. Starting from the variance function of a Tweedie model, we outline how to get alpha and beta divergences as special cases of Csiszár’s f and Bregma...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Entropy
دوره 17 شماره
صفحات -
تاریخ انتشار 2015